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The uniform motion of a closed, axisymmetric body along the axis of an 
unbounded, rotating, inviscid, incompressible fluid is considered on Long’s 
hypotheses that: the flow is steady; the flow is uniform far upstream of the body; 
the inertial waves excited by the body cannot propagate upstream. The appro- 
priate similarity parameters are k, an inverse Rossby number based on the body 
length, and 6, the slenderness ratio of the body. It is conjectured that an upper 
bound to the parametric regime in which the solution implied by Long’s hypo- 
theses remains valid, say k6 E K < K,, is determined by the first occurrence, with 
increasing K, of a local reversal of the flow. 

A general solution for the stream function is established in terms of an assumed 
distribution of dipoles along the axis of the body. The disturbance upstream of 
the body is found to be proportional to the product of K~ and the dipole moment 
(total dipole strength) and to fall off only as the inverse distance, as compared 
with the inverse cube of the distance for a potential flow. The corresponding wave 
drag is found to depend on the power spectrum of the dipole distribution in the 
axial wave-number interval (0, k) and to be a monotonically decreasing function 
of the axial velocity for fixed angular velocity. Asymptotic solutions for pre- 
scribed bodies are established in the following limits: (i) k+O with 6 fixed; 
(ii) S+O with k fixed; (iii) k+co with k8 fixed. Both the upstream disturbance 
and the wave drag in the limit (i) depend essentially on the dipole moment of the 
body with respect to a uniform, potential flow. The limit (ii) is analogous to con- 
ventional slender-body theory and yields a dipole density that is proportional to 
the cross-sectional area of the body. The limit (iii) leads to a singular integral 
equation that is solved to determine K, and the dipole moment for a slender body. 

The results are applied to a sphere and a slender ellipsoid. The upstream axial 
velocity and the drag coeEcient based on Stewartson’s results for a sphere are 
found to differ significantly from Maxworthy ’s (1 969) measurements, presumably 
in consequence of viscous separation effects. Maxworthy ’s measured values of 
upstream axial velocity are found to agree with the theoretical values for an 
equivalent ellipsoid, based on the sphere plus its upstream wake, for K 5 K,. 

Also Department of Aerospace and Mechanical Engineering Sciences. 
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1. Introduction 
We consider (see figure 1) the uniform motion of a closed, axisymmetric body 

along the axis of an unbounded, rotating, inviscid, incompressible fluid on the 
basis of Long’s hypotheses: (Z1) the flow is steady; (X2)  the flow is uniform at 
a sufficient distance upstream of the body; (S3) the inertial waves excited by 
the body cannot propagate upstream. 

This problem was first stated completely (in a mathematical sense) by Long 
(1953); earlier work, going back some fifty years to the original investigations of 
Taylor and Proudman, is reviewed by Squire (1956) and Greenspan (1968). The 
following treatment closely parallels, but is less detailed than, a recent study of 

1 - 2 z - d  
FIGURE 1. Geometrical configuration for body of revolution in rotating flow. 

two-dimensional, stratified shear flow (Miles & Huppert 1969). It is aimed 
primarily at slender bodies, for which viscous effects may be of only secondary 
importance; however, we also reconsider and extend Stewartson’s ( 1958) results 
for a sphere (for which viscous separation may be of dominant importance) in 
order to make comparisons with both Maxworthy’s (1969) experimental results 
and the theoretical results for an ellipsoid. 

The similarity parameters for flow around a body of prescribed shape, charac- 
teristic axial length 1 ,  and characteristic radius 62 are the slenderness ratio 6, 
either of the inverse Rossby numbers 

k = 2QE/U (1.1) 

and K = k6, (1.2) 

and the drag coefficient C,(k, 6) = (&U2n82Z2)-1D, (1.3) 

where D is the angular velocity of the basic flow, U is the translational velocity 
of the body, p is the density of the fluid, and D is the wave drag on the body. We 
seek a description of the flow in that parametric range, say 0 < K < K,(&), in 
which Long’s model appears to be valid (see below) and focus especially on the 
lee-wave amplitude, the drag coefficient, and the upstream axial velocity as 
representative observables. 
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Validity of Long’s hypotheses 
A mathematically rigorous defence of and S2 would appear to demand both 
the solution of a well-posed initial-value problem without the assumption of 
small disturbances (this assumption is not necessary in Long’s model for steady 
flow) and a proof of the uniqueness and stability of the solution to that problem. 
No such solution is known, and it therefore is necessary to fall back on arguments 
that are, in some degree, either conjecturd or controversial or both. The validity 
of Af3 for waves of fmih axial wavelength (a + 0 in the subsequent development) 
follows from group-velocity arguments (Lighthill 1967), but these arguments do 
not exclude cylindrical waves (a = 0 ) ,  for which the group velocity may exceed 
the phase velocity (which must be equal to U for steady flow). 

Long’s hypotheses are implicitly accepted by Fraenkel(1956), who states that 
‘the upper limit of this range, where flow with no disturbances far upstream 
[breaks downlt is as yet unknown’; and, more tentatively, by Squire (1956), who 
states that ‘waves are unlikely to arise ahead of the disturbance, if a solution 
without waves is possible’. 

Stewartson, after considering the uniform translation of a sphere along the 
axis of a rotating fluid, concludes (1958) that ‘ a cylindrical component certainly 
occurs for [sufficiently large k], but may occur for all [k] > 0’. He has recently 
(1968a) given an alternative solution for the sphere on the hypothesis of separated 
flow and concludes that (personal communication) ‘The results are not entirely 
satisfactory but it seems clear that the forward wake does occur for all [k] > 0 ’. 

Trustrum (1964) considers the transient development of rotating or stratified 
flows on the hypothesis of small disturbances and concludes that ‘the assumption 
of a uniform undisturbed upstream flow, which has been basic to most theories 
in both stratified flow and rotating fluids is probably not valid’. She notes, 
however, that ‘the solution for a [plane] dipole with its axis along the direction 
of the uniform stream.. .has no terms independent of 5 and so its influence does 
not extend to upstream infinity’. We regard the implications of this last state- 
ment as decisive, at  least for bodies of sufficiently small transverse dimensions, 
by virtue of the established fact that the steady motion associated with rotating 
flow past a closed, axisymmetric body can be attributed to an equivalent distribu- 
tion of axial dipoles (see 0 2 below) for sufficiently small values of K. 

Greenspan (1968) reviews the existing literature on the subject and concludes 
with the statement (p. 215): 

‘ I t  seems likely that the hypothesis of no upstream disturbance is not strictly 
correct and that a body introduced into the stream will always affect the entry 
conditions at infmity to some degree. However, the assumption may be, and 
indeed probably is, an excellent approximation over a wide range of parameter 
settings because the amount of energy appearing upstream can be a small fraction 
of the total generated. Solutions derived on this basis can then be meaningful 
and significant.’ 

We take the position that Long’s hypotheses are strictly correct for unseparated 

t Square brmkets within quotations indicate interpolations by the present writer. 
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flow in the sense that they yield an inner approximation, with a relative error of 
O(E)  as E = 2!2u/U2-+0, that can be matched to an outer approximation that is 
determined by the Oseen approximation at  distances of O(l/kE) from the body.-j- 
It seems likely, however, that this inner approximation is unstable for sufficiently 
large K, in which case steady, unseparated flow may be impossible. 

Stability of inviscid, rotating $ow 
Long (1 962) asserts that an inviscid, rotating flow that contains local reversals 
(u < 0 )  is necessarily unstable in consequence of the corresponding violation of 
Rayleigh’s (1916) criterion that the square of the circulation be a monotonically 
increasing function of the cylindrical radius. It seems unlikely that Rayleigh’s 
criterion, which refers essentially to static stability, is a sufficient condition for 
dynamic stability, but we accept Long’s conjecture that it is a necessary condi- 
tion. Accordingly, we limit our consideration of the lee-wave regime to K < K,, 

where K, is the smallest value of K for which u = 0 at one or more points in the flow 
outside of the body. We add that the solutions implied by Long’s hypotheses 
typically contain closed streamlines for values of K only slightly larger than K,. 

The effects of viscosity on the motion within these closed streamlines cannot be 
ignored, however large the Reynolds number (Batchelor 1956). Long’s (1955) 
experiments on stratified flow suggest that the flow is locally turbulent in such 
regions, but that lee waves of decreasing amplitudes (relative to those for K < K,) 

persist for K > K,. 

The boundary-value problem 
We turn now to the formulation of the boundary-value problem implied by the 
hypotheses of the opening paragraph. Following Squire (1956), but using 
dimensionless variables and changing the sign of his perturbation stream function, 
we choose cylindrical polar co-ordinates {lx, lr, 4) in a reference frame in which the 
basic velocity is ( U ,  0, Qlr] and the body is specified by r = 6y(z) and derive the 
perturbation velocity from a stream function Ul$(x,!r), such that the total 
velocity field is 

v = (u,v,w) = V +  Ur-l{-$r,$s, -k$), V = {U,O,Qr) .  (1-4) 

@zz + @rr - +@? i- k2$ = 0 (1.5) 

$(x,r)  = +r2 on r = h’y(x) (1.6) 

and @ = O(R-’) (x+--co), (1.7) 

where R = (z2+r2)& (1.8) 

p - p ,  = Q U2{2r-1$r - r2( @$ + $: + k2@)].  (1.9) 

The uniqueness of the solution determined by (1.5)-( 1.7) may be demonstrated 
I hope to explore this question further in a future paper. 

Then @ satisfies 

and the boundary conditions 

is the spherical polar radius. The perturbation pressure is given by 
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by an appropriate modification of the proof for the corresponding, exterior 
boundary-value problem in classical wave theory [wherein (1.7) is replaced by 
Sommerfeld’s radiation and finiteness conditions; see Courant & Hilbert 1962, 
pp. 312-201 if the fundamental solution in that problem is replaced by the dipole 
solution, lCrl, given in $ 2  below. 

Outline of analysis 
We begin our attack on the boundary-value problem by constructing, in 0 2 below, 
a general solution of (1.5) and (1.7) in terms of an equivalent distribution, say 
f(z), of dipoles along the axis of the body. The fundamental solution for this con- 
struction, say satisfies (1.5), exhibits a dipole singularity at  a prescribed point 
on the axis, and satisfies (1.7) at  infinity; it is due originally to Fraenkel(l956). 
We also determine a complete set of solutions, say {1c.,}, from +l by axial differ- 
entiation (as in classical potential theory) and relate them to the corresponding 
set determined by Stewartson (1958). We then determine asymptotic approxima- 
tions to the general solution in terms of $‘(a), the Fourier transform off@) with 
respect to axial wave-number, and show that the upstream field depends essenti- 
ally on the dipole moment, F(O), the lee-wave field on P(a) in a = (0, k), and the 
wave drag on IF(a)12 in a = (0, k). 

In  0 3, we apply the general results of 0 2 to a sphere, for which the solution by 
separation of variables is given by Stewartson (1958). We use his results to 
determine the upstream axial velocity and the wave drag for 0 < k < K, and to 
determine /cC + 2.2. 

Stewartson’s analysis could be extended to an ellipsoid, just as Huppert & 
Mles (1969) have extended Miles’ (1968) analysis of stratified flow over a semi- 
circular cylinder to a semi-elliptical cylinder; however, such an extension would 
involve Lam6 functions, which present computational difficulties. Analytical 
solutions for more general bodies appear to require further approximations. 

We consider in 0 4 the limit k + 0 with 6 fixed, which permits the flow in the 
neighbourhood of the body to be determined by potential theory and the asymp- 
totic 00w to be represented by a single dipole source, the strength of which is 
proportional to the dipole moment of the body with respect to a uniform potential 
flow. [This basic procedure is due to Rayleigh (1871, 1897) and is known as the 
Rayleigh-scattering approximation in diffraction theory.] We show that the 
limiting wave drag depends essentially only upon the square of this dipole 
moment. 

We consider in 9 5 the limit 6-t 0 with k fixed, which permits the boundary 
condition (1.6) to be imposed on the axis, r = 0, rather than at r = 6y(x). This 
slender-body approximation, which has well-known antecedents in aerodynamics 
(Munk 1934; von KBrmBn 1936), implies that f(z) is simply proportional to the 
cross-sectional area of the body and leads directly to a rather simple integral for 
the wave drag. The slender-body approximation may be extended by including 
higher-order terms in a2 and log S in the expansion of $(z, 87) in (1.6), although it 
might be necessary to invoke the method of matched asymptotic expansions in 
consequence of the non-uniform validity of the expansion near the blunt ends of 
the body. 
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The slender-body approximation is subject to the implicit restriction 
K = kS < 1 and is not uniformly valid as L - t  00; accordingly, it cannot be used 
to obtain a reliable estimate of K,. We therefore consider the limit k -+ 00 with 
K fixed in § 6. We find that the boundary condition (1.6) then yields a singular 
integral equation of Hilbert’s type for f(z), which we solve by invoking known 
results of function theory. This solution tends to the slender-body approximation 
as K -+ 0,  which implies that the joint limit k + 00, 6-+ 0 is commutative. 

We apply the results of QQ5 and 6 to a slender ellipsoid in Q 7 and calculate the 
wave drag in the slender-body approximation, the axial velocity far upstream of 
the body for 0 6 k < K,, and K, + 1.94. We find that the results for both the 
dipole moment (apstream injluemce parameter) and drag can be scaled in such a 
way as to yield curves that are close to the corresponding results for a sphere. 
We conjecture that these curves bound the correspondingly scaled results for 
other prolate ellipsoids (0 < 6 c 1). We expect the results for the ellipsoid to be 
qualititatively representative for other finite, slender bodies, with differences 
similar to those already established for several bodies in stratified flow (Miles & 
Huppert 1969). 

Comparison with experiment 
Maxworthy (1969) has recently measured the axial velocity upstream of, and the 
drag on, a sphere in a circular pipe of large radius for values of K between 0.1 and 
200 and values of Re = 2 Ua/v between 5 and 700. He reports that a finite slug of 
stagnant fluid appears in front of the sphere and that the length of this slug is a 
monotonically increasing function of K for fixed KRe and of Re for fixed K > 2 (the 
length of the slug appears to be independent of Re for K < 2, but experimental 
scatter obscures this point). 

We compare Maxworthy’s measured values of the axial velocity upstream of 
the region of stagnant flow with the theoretical values deduced from Stewartson’s 
(1958) solution in 9 3 below and find substantial discrepancies. These discrep- 
ancies, which appear to reflect the dominant importance of viscous effects, sug- 
gest that an inviscid model is not likely to provide an adequate description of  the 
flow past a body as bluff as a sphere in a rotating flow;? however, they throw little 
or no light on the validity of Long’s hypotheses, above, for a flow, such 
as that past a slender body, in which viscous effects may be of only secondary 
importance. 

We also (in $ 7  below) compare Maxworthy’s measured values of upstream 
axial velocity with the theoretical values, based on Long’s model, for an ellipsoid 
having the same major and minor semi-axes as the sphere plus its upstream wake. 
The agreement is within the experimental scatter and suggests that Long’s model 
may be adequate for the description of the flow past a slender body in the 
parametric range K 5 2, 6 5 0.5. 

7 Long’s (1953) original experiments, which provide qualitative confirmation of the 
adequacy of his model for the description of the lee-wave pattern, were cclrried out with 
a streamlined body having a spherical nose and a conical tail. 
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2. General solution 
We pose a general solution of (1.5) and (1.7) in the form 

-a 
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where f (4  = @@’ 0 + 1 (2.2) 

is an equivalent dipole density, and +l(x, r )  is a fundamental solution of (1 .5)  that 
exhibits the dipole behaviour 

( 2 . 3 ~ )  

-+ $(x) (r-+O) (2 .3b)  

a t  the origin and satisfies (1 .7)  at infinity; &s) is Dirac’s delta function, and 8 is 
the polar angle measured from the positive-z axis. We emphasize that f(x) 
generally depends on both k and 6 for a prescribed body and that it vanishes 
identically both outside of the body and over a finite interval of the interior axis 
in the neighbourhood of a blunt end. 

The dipole solution 11.1 has been determined by F r m n k e l ( l 9 5 6 ,  appendix 111)’ 
who gives representations equivalent to the expansion of ( 3 . 2 ~ )  below and to 

r )  --f &ra(x2 + r2)-$ = +R-l sin2 8 (ICR + 0 )  

+l (x , r )  = +ra,[- R - l c o s k R +  J,{(k2-a2))r}sinolxda] ( 2 . 4 ~ )  so” - kH(x)sinICRsin28 (kR-+co),  (2 .4b )  

where 8, implies partial differentiation with respect to r ,  and H ( z )  is Heaviside’s 
step function. Invoking the Fourier-integral representation ( Weyrich’s formula) 

R - l e i k R  = i IOm Hdl){(k2-a2)tr}cosaxda, 0 < arg(k2-a2)i < n, (2 .5 )  

we transform ( 2 . 4 ~ )  to 

where 9 implies the real part of, and the path of integration, say C, is indented 
under the branch point at a = k in an a-plane cut as shown in figure 2 ( a ) .  The 
representation (2 .6) ,  which facilitates a Fourier-integral representation of the 
general solution (2.1)’ also may be obtained directly from the Fourier-Hankel 
transform solution of (1.5)’ (1 .7)  and (2 .3b) .  

Substituting (2.6) into (2.1),  we place the result in the form 

(2 .7)  

J -a 
is the Fourier transform off(x). 

We obtain an alternative representation of +, which separates the propagated 
from the non-propagated components of the total disturbance, by deforming the 
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path C to C, for & 2 > 0, as shown in figures 2 (b), (c), invoking the analytical 
continuation 

H,l){ein(k2- a2)tr)  = -H,j2){(k2- a2)+r} (2.9) 

in the upper-half of the a-plane, introducing the change of variable a = iq sgn x 
along the imaginary axis, and observing that a( f iq) is real. The end result is 

(4 (6 (4 
FIGURE 2. The contours C for (2.6) and (2.7), C, for (2.10) with x > 0, 

and C- for (2.10) with x < 0. 

The first integral comprises the inertial waves, which appear only in the lee of 
the body; the second integral comprises disturbances that decay exponentially 
in 1x1 (but the integral superposition of these disturbances decays only like 
111x1; see below). 

Multipole expansion 
We obtain a third representation of @(x, r )  by expanding @l(x - 6, T )  about [ = 0: 

(2.11) 

where $-n(~, r )  = ( -  (p1(2, r ) / (n  - l)!] ( 2 . 1 2 ~ ~ )  

-f $R-nPA(cos 0) sin2 0 (kR+ 0) (2.12b) 

N H ( ~ ) s i n ~ B c o s ~ - ~ 0 ~ { (  -ik)12eikR/(n- I)!) (kB+m), 
(2 .124  

Ph is the derivative of a Legendre polynomial with respect to its argument, and 

P m  

( 2 . 1 3 ~ )  
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is the nth moment of f(x) and is, in general, a function of the parameters Ic and 8. 
We designate 

(2.14) 

as the dipole moment.-f 
The infinite set {@m}, n = 1,2,  ..., is complete in 0 = (0, n) for fixed R, and 

each of its members satisfies (1.5) and (1.7). It is linearly related to, but not 
identical with, the complete set {Qn} given by Stewartson (1958); see $ 3  below. 

Asymptotic repvesentation 
The dominant contributions to the asymptotic approximation to @ as kR+ co 
in the representation (2.7) come from the neighbourhoods of the points of 
stationary phase, if any, and the end-point a = 0. Replacing Hi1) by the dominant 
term in its asymptotic expansion, we find that the integrand has a point of 
stationary phase at  k = a cos 8 if and only if x > 0. Invoking the stationary-phase 
approximation to obtain the dominant contribution of this point and invoking 
Watson's lemma to obtain the dominant contribution from a = 0, we obtain 

+(x, r )  N k H ( x )  sin2 0%{F(k cos 0) ei(kR-W} - +kF, tan 0J,(kRsin 0) + O(R-') 

( k R + w ,  Ign-01 > 0), (2.15) 

where Fl is given by (2.14); this representation is not uniformly valid as 0++n. 

v - V  N Ic2UH(x)R-1~[F(kcos8)  eikR{-sinOcosO, siii20, isine}] 

Substituting (2.15) into (1.4), we obtain the perturbation-velocity field 

+ +k2Fl Ux-l{J,(kr), 0, Jl(kr)} 

+O(Rp2) (kR-+m, l&n-81 > 0) .  (2.16) 

The first term on the right-hand side of (2.16), which represents the inertial waves, 
is transverse to the spherical radius R and dominates the second term as k R  + 00 

in 0 < 0 < in. The magnitude of this transverse velocity, say a, is given by 

5 = k2UR-11F(kcos0)I sine. (2.17) 

The second term on the right-hand side of (2.15) makes only a negligible 
contribution to v in the limit kR-tco, 0 < B < $71, but it dominates the asymp- 
totic approximations to the radial velocity in 0 < 0 < $7 and the total velocity 
in in < 8 6 n, both of which are O(R-4) except near the axis (0 = 0 or n). The 
perturbation velocity on the axis is given by 

(u- U ) / U  N ,d1x-l ( r  = 0, 1x1 +a), (2.18) 

where -01, = Jk2Fl = &k2F(0) (2.19) 

is, by definition, the upstream-influence parameter. We also remark that the axial 
perturbation velocity in x < 0 is oscillatory in r ;  in particular, the axial velocity 
in the direction of motion implied by (2.16) as x+w exceeds the velocity of the 

t The moment defined by the right-hand side of ( 2 . 1 3 ~ )  is designated 7r-lFnp1, rather 
than Fn, in Miles & Huppert (1969). 

18 Fluid Mech. 36 
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body for 2.4 c kr < 5.5 and has a maximum of O.4dl/)x1 at kr = 3.8. These last 
inferences are in qualitative agreement with Maxworthy's observations; see $ 7  
below. 

Upstream inJluence 
The result (2.18) is of special interest for the question of upstream influence, for 
it reveals that the axial perturbation velocity falls off much more slowly than in 
potential flow (for which u- U N Fl U/xa on r = 0). We explore this question 
further by calculating the velocity at any point of the axis upstream of the body 
from (2.10), which reduces to  

Invoking (1.4), (2.8) and (2.13), we obtain the representations 

(2.21 b)  

(2.21 c) 

We observe 'Chat,, by hypothesis, x lies outside of the 5-range of integration, which 
lies within the body, and that the integral in (2.21 b )  is mi*@), where f,(x) is the 
Hilbert transform off(x) (see 0 6 below). 

Letting z+-m in (2.21c), we recover (2.18) or, if we retain both components 
of the dipole term, 

(u- U ) / U  N F1(4k2x-1+x-3) (z+-co,1' = O ) ,  (2.22) 

which is uniformly valid as E --f 0, in which limit it tends to the axial velocity 
induced by a dipole in potential flow. We remark that the upstream flow (x + - co) 
is dominated by the dipole component of $ for all E ,  whereas the downstream flow 
is so dominated only for 1/x < k < 1 (see $4 below). 

We note in passing that the counterpart of (2.21 b) on the axis downstream of 
the body, as determined from (2.10), is 

(u- U)/L' = ( k " + a : ) j  ( ~ - & ~ { + - c o s k ( x - 5 ) } f ( 5 ) d 5  (z > 0 , r  = 0). (2.23) 

Letting x+co in (2 .25) ,  we again recover (2.18). 

m 

- m  

Wave drag 
We calculate the wave drag by carrying out a momentum balance over a spherical 
surface of radius R and letting R + co. Invoking the aforementioned, asymptotic 
properties of the velocity field, we find that the total transport of momentum 
across this surface vanishes asymptotically, in consequence of which the drag on 
the body is given by the axial thrust of the pressure on the surface, 

D = - lim ( 2nZ2R2) (2.24) 
R+m 
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Substituting (1 .9 )  into (2 .24)  and invoking (2 .15 ) ,  we find that the integrated 
contributions of po  and r--l$? vanish identically and that the contributions of the 
quadratic terms to the integral over the upstream hemisphere vanish in the 
limit: the end result is 

D = rrpU212 lim ($& + k211r2) cot 8d6' ( 2 . 2 5 a )  
R-r m 

(2 .25b)  

Invoking the change of variable a = k cos 6' in (2.25 b )  and substituting the result 
into (1.3), we obtain 

The function IF(a)]2 is the power spectrum of the dipole density and has the 
representations 

(2.27 a) 

by virtue of (2 .8)  and (2 .13b) ,  respectively. The drag depends only on that 
portion of the spectrum in a = (0, k) and therefore may be made arbitrarily small 
by a suitable tailoring off(x). We recall, however, that f(x) depends on both k and 
6 except in the limit 6+ 0, wherein it is proportional to the cross-sectional area 
of the body (see $ 5  below); accordingly, it might be possible to design a body 
with zero wave drag (within the limitations of our idealized model) at  one or more 
discrete values of k, but not for all k (cf. the Busemann biplane, which has zero 
wave drag at  discrete values of the Mach number). 

Substituting (2 .27a)  into (2 .26)  and integrating by parts with respect to  ( on 
the hypothesis that f vanishes at  the end-points of the integration, we obtain 

Substituting (2 .276)  into (2 .26 ) ,  we obtain the power series 

S2CD = &k4{F"1+(P;-F1&)k2+ ...> ( 2 . 2 9 a )  
(2.29 b )  

These alternative representations appear to be convenient for large and small k, 
respectively. 

Substituting (2.26) and (1 .1 )  into (1.3) and differentiating the result with 
respect to U ,  we find that D is a monotonically decreasing function of U for 
prescribed i2 and F(a).  The implicit requirement that F(a)  be independent of U 
is satisfied in the slender-body approximation of 0 5 ;  the analysis of $ 6 suggests 
that the dependence of F ( a )  on k implies even larger values of - aD/aU within 
the inertial-wave r6gime. The result ( 2 . 2 9 ~ )  implies that D vanishcs like P2 
as U J C Q .  

= 2 d 3 1  +6((F2/F1)2- (F3/F.))k2+ ...I- 

18-2 
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3. Sphere 
We consider, in terms of the general formulation of 0 2, Stewartson’s (1958) 

results for a sphere, for which 6 = 1. We refer to equations in Stewartson’s paper 
by the prefix S and replace W ,  I and ka in his notation by U, a and K ,  respectively. 

Stewartson poses the perturbation stream function in the form (S 4.2) 

where grn is given by (S 4.3) and satisfies (1.5) and (1.7). The function $, is pro- 
portional to Fraenkel’s dipole solution $,; grn is a linear combination of 

$2, . . . , @,. Invoking the boundary condition (1.6)’ Stewartson obtains the 
infinite set of linear equations [(S 4.6) after correcting a typographical error] 

where the numerical coefficients a,, are determined by (S 3.11), (S 3.12), and 
(S 4.3) [Pi, should be replaced by P&+2 in (S 3.12)]. 

Stewartson (19683) gives numerical solutions of (3.2) for K = 1(1)6 with four- 
figure accuracy for A,, at least three-figure accuracy for A,-A, (except for K = 1 
and 2, where both A ,  and A ,  are less than 0-Ol), and lesser accuracy for A,-A,. 
[Stewartson’s (1958) original results are less accurate in consequence of a spurious 
singularity at  K = 5.76, which appears to be near a zero (possibly complex) of the 
truncated determinant; cf. Miles (1968), where this difficulty is discussed in more 
detail.] We obtain analytical approximations by truncation. The first such 
approximation is 

(3.3) 
where j, (below) and y, are spherical Bessel functions. The second approximation, 
obtained by retaining the first two terms in each of the first three equations 
(m = 1 , n  = 1,2;m = 2,n  = 1,2;m = 3,n = 2,3),is 

where, here and subsequently, the argument of each of thejn and yn is k. We find 
that the first and second approximations of (3.3) and (3.4) are within 1% of 
Stewartson’s results for k = 1 and k = 2, respectively. It is clear from the form 
of (3.2) that the accuracy of a given truncation decreases rapidly with increasing K 

and that the first approximation breaks down completely at the smallest zero 
of yl(k), k = 2.80 (the truncated determinant of second order does not appear to 
have a real zero in k < 4.3; k = 4.3 is the smallest real zero of the truncated 
determinant of third order). 

We relate the A ,  in the expansion of (3.1) to the F, in the expansion of (2.11) 
by comparing the asymptotic representation implied by (3.1) and Stewartson’s 
asymptotic representations of the $, to that implied by (2.11) and (2.12~). 
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Equating the coefficients of coskR and sinkR in these representations and 
writing ,u = cos 8, we obtain (for 0 < ,u Q 1 )  

m m 

- (477k3)-4 ( -)mA2m+lP;m+l(,u) = ( -)n{k2~/(2n)!}F2,+,p2n ( 3 . 5 ~ )  
m=O n=O 

and 
m 00 

-(*nk3)-4 ( -)mA2mP;m(p) = c (-)"{k-/(2n- l)!}R&n-l. (3 .5b)  
m=l n= 1 

We reduce ( 3 . 5 ~ ~  b)  to an infinite set of linear equations with constant coefficients 
by invoking the orthogonality of the independent, complete sets (1 - p2)*P;l,(p) 
and (1  - , ~ ~ ) * P ; l ~ + ~ ( p )  in ,u = (0 , l ) .  Retaining only the first three of each of the An 
and the Fn, we obtain 

{Fl, F2, El3} = - (&rk3)-4{Al + $A3, 3k1A2,  1 5 k 2 A 3 )  (3.6a)  

= ( -L2Yi)-' [1 i- (45jih/64Y1Y2)1-~ 

x ( 1  (105j2j3/256!h&d5 ( -  15j2/8kY2), (525j2j3/12sk2y2y3)), ( 3 - 6 b )  

where (3 .6b)  follows from ( 3 . 6 ~ )  through (3 .4) .  The moments given by (3 .6b)  are 
plotted in figure 3. The corresponding upstream-influence parameter of (2.19) is 
plotted in figure 4. 

Retaining the first three modes in (3 .1 ) ,  we find that the restriction u > 0 is 
first violated near x = O +  and kr = 27r for k = K, = 2.2; a calculation based on 
the first mode alone yields K, = 2.1. The results for the analogous problem of a 
semi-circular obstacle in a stratified flow (Miles 1968) suggest that more accurate 
calculations would move the critical point somewhat downst'ream of the equator 
without significantly altering K,. 

We approximate the velocity on the upstream axis by retaining only the dipole 
(n  = 1 )  and quadrupole (n = 2)  terms in the expansion of (2.21 c )  and rewriting 
the result in the form 

u1 ( U  - u) /U = d l R - l { l  - (Fz/Fl) R-1 

+ ( 2/k2) - ( 6/L2)  (F2/Fl) (A! 1 ,  8 = T ) ,  (3 .7)  

which represents the axial velocity, in the direction of motion, forward of a 
sphere moving with unit ve1ocity.j- Substituting the numerical values of Fl and 
F2 given by (3.6b) into (3.7),  we obtain the results plotted in figure 5 ;  they are 
within 1 yo of the known value at the boundary, u1 = 1 at R = 1 ,  for k < 2-2. We 
also find that the dipoIe approximation of (2.18),  

ul - ~ d ~ R - 1  (0 = T ) ,  (3 .8)  

differs from (3.7) by less than 5 % for R 2 3 and k 6 2.2. 

t Stewartson's representation of the @m is not well suited to the calculation of the 
upstream field (kR + 00, 6' > in) in consequence of a rate of convergence that decreases 
with increasing k R  (for +n < 6' < n) in a way that is reminiscent of the separation-of- 
variables solution for scattering by a sphere when its radius is large compared with the 
wavelength of the scattered wave. This difficulty could be overcome by a Watson trans- 
formation, which would yield results equivalent to those determined by the asymptotic 
development of the representation (2.20)-in particular, (2.2 1 c). 

A 
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differs from the result of figure 4 by less than 1 yo for k < 1.5 and less than 10 % 
fork 6 2. 

Maxworthy’s (1969) measured values of u1 for k = 1.74 and 2.16 in the range 
3 < R < 10 are roughly double those given by (3.7). His measured values of C, 
are indiependent of Re = 2 Ua/u for large Re and k > 5.  They also are independent 
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Substituting the numerical values given by (3 .6b)  into ( 2 . 2 8 ~ ~ )  we obtain the 
drag coefficient plotted in figure 6; it  is within 0.5 yo of Stewartson’s result for 
k = 2. We also find that contribution of the octupole (1% = 3) to C, is less than 1 % 
for k < 2 and that the dipole approximation, 
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of Re for smaller values of k after extrapolation from the actual experimental 
values to larger values of Re; for example, extrapolation yields C, = 1.8 & 0-3 at 
k = 2, which is substantially smaller than Stewartson's (1958) theoretical value 
of 2.8. These discrepancies between theory and experiment appear to be associ- 
ated with the presence of viscous wakes both fore and aft of the sphere. They 
render it fairly certain that an inviscid model for a body as bluff as a sphere in 
a rotating flow is quite inadequate within the parametric range of Maxworthy's 
experiments and suggest that it is unlikely to  be adequate for any parametric 
range. 

FIGURE 

". 
10 8 4 2 1 

Rlu 
5. The axial velocity upstream of a sphere, as given by (3.7). 

k 
FIGURE 6. The drag coefficients for a prolate ellipsoid as given by (2.29) and (3.6) for S = 1 

(sphere) and by ( 7 . 5 ~ ~ )  for 6 + 0 (slender-body approximation). 
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4. Rayleigh-scattering approximation (k -+ 0) 

obtain the inner and outer asymptotic approximations 
Letting k+O in (2.12b) and ( 2 . 1 2 ~ )  and substituting the results into (2.11), we 

m 

n = l  
@(x,s) N &sin20 C I;”,R-nP~(cos8){1+O(IC2R2)) (IcR-tO) (4 . la )  

(4 . lb)  

The corresponding approximation to  the drag coefficient is given by ( 2 . 2 9 ~ ) ,  
which reduces to 

N kF,B(x)  sin kR sin2 8{ 1 + O(k) }  (kR + 00). 

SaC, = *k4F7 (1 + O(k2)} ,  (4.2) 

wherein Fl is evaluated for k = 0 (potential flow). It would be consistent with the 
inner approximation, (4.1 a),  to include the quadrupole term (n = 2) in the outer 
approximation, (4 . lb) ,  but this term makes no contribution to the drag within 
the overall error factor of 1 + O(k2) .  

The flow in the neighbourhood of the body is potential within 1 + O(k2)  and 
may be determined by the methods developed for airships (Munk 1934; von 
K&rm&n 1927; Taylor 1928). The results so determined generally will not be in 
the form (4.1 a ) ,  which may not converge in R < 1, but may be placed in that form 
by analytic continuation. 

We infer from (4.1 b)  and (4.2) that the wave field downstream of the body and 
the resulting drag are determined essentially by the dipole moment of the body 
with respect to a uniform potential flow. The properties of this dipole moment are 
discussed by Lamb (1932, $121a), Taylor (1928), and Polya & Szego (1951). 
Perhaps the most important of these properties are that 

F~ = (v+ w)/2Tz3 ( I C  = 01, (4.3) 

where V and p W are the volume and the axial component of the virtual mass of 
the body, and that 13F1 is a monotonically increasing set function of the boundary. 
We may use the latter property to bound 13F1 from above and below with the aid 
of the known results for ellipsoids of revolution. We also remark that Fl is 
invariant under a reversal of the flow, by virtue of which the limiting drag (as 
k --f 0)  is similarly invariant, 

Modifying a suggestion by Munk (1934), we suggest that the dipole moment 
of any smooth, prolate body of revolution of length 21 and maximum diameter 
26Z may be approximated by the result for an ellipsoid (Lamb 1932, $114) 
according to 

2 n z 3 ~ ~  v = (1 - 6 2 )  [ 1 - 62(  1 - s2) -hg  {( 1 + (1 - 62)9/s}]-1 
(0 < 6 < 1)  (4.44 

= 1+621og(1/6)+O(62) (S-tO). (4.4b) 

= 0*92+0*586 (0-4 < 8 < 1). (4.4c) 

The approximation (4.4b) is within 1% of the exact result ( 4 . 4 ~ )  for 6 < 0.4 
[including the term of O(S2) in (4.4b) actually degrades the approximation for 
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6 > 0.11. The empirical approximation ( 4 . 4 ~ )  is within 1 % of the exact result 
( 4 . 4 ~ )  for 0.4 < S < 1. 

5. Slender-body approximation (S -+ 0) 
Invoking the boundary condition (1.6) in (2.1), we obtain the integral equation 

where S ( x )  is the cross-sectional area of the body. Letting a+- 0 and invoking the 
limiting approximation (2.3b) for we obtain 

f(x) = (2nlz)-lS(x) (1 + O(S210g S)} (S+ 0, k fixed). (5.2) 
The approximation (5.2) is not uniformly valid either for k+00 or in the 

neighbourhood of a blunt end, where \q’(x)l -+a. A modified slender-body 
approximation that is valid as k --f 00 with kS fixed is developed in 3 6. An ap- 
proximation that is uniformly valid in the neighbourhoods Ix T 11 < l / k  for 
locally paraboloidal ends may be inferred from the work of Moran (1963) and 
Handelsman & Keller (1967). 

The multipole moments of (2.13) are of limited interest for slender bodies, and 
we notice only that the substitution of (5.2) into (2.14) yields 

F~ = (v/2m23) (1 + o(~2iog s)} (8-t 0 1 ,  (5.3) 

in agreement with the result obtained by letting S-tO in (4.3); however, (5.3) 
requires only kS < 1, rather than lc < 1,  for its validity. 

Substituting (5.2) into (2.28) and invoking (1.3), we obtain the slender-body 
approximation to the wave drag in the form 

) d ( d x  (1 -i- O(S21og S)}. I x-5 (5.4) 
1 - cos k(x  - [) x ______.. 

The error term is for a slender body that is no more blunt than an ellipsoid a t  both 
bow and stern. 

Alternative forms for the drag may be obtained from (5.4) by integration by 
parts. The most convenient form for the actual calculation, as in $7 below, may 
be that of (2.26). We infer from (5.4) that the drag of a slender body (6-+0) is 
invariant under a reversal of the ffow independently of axial symmetry. 

Letting k -+ co in (5.4), invoking the Riemann-Lebesgue lemma, integrating by 
parts, and substituting k from (l . l) ,  we obtain 

which is analogous to the well-known results of Prandtl for the vortex drag on 
a lifting line and of von K&rm&n for the supersonic wave drag on a body of 
revolution [but note that this last result contains gUS’’(x) in place of sZS’(x)]. We 
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infer from this analogy that minimizing (5.5) under the constraints of prescribed 
length and volume, say 21 and V ,  yields the elliptic cross-sectional distribution 

S(x)  = SO(1-x2)m(1-  1x1) (5.6) 

and D = $7rps; = (2/7r) (pWV'2/12) (S+O, k + c o ) .  (5.7) 

[The body described by (5.6) is a Kcirhn ogive reflected in x = 0 and is slightly 
more blunt than an ellipsoid. Von K h m h  (1936) gave the result for the half- 
body of prescribed length and calibre with minimum, supersonic wave drag.] 

The limiting result (5.7) is of little direct value for even very slender bodies 
(see S$6 and 7 below), but it does providc a convenient basis of comparison for 
bodies of prescribed volume. The minimization of D for prescribed frontal cross- 
section, X,, is more difficult, but we remark that the infinitely long, spindle-like - -  
body prescribed by 

X(x) = So( 1 + x y - 1  (5.5) 

which is only half that given by (5.7) for equal 8,. 

6. Low-speed, slender-body approximation (k + 00, S -+ 0) 
We now construct a singular integral equation for f (x) in the limit k + 00 with 

K = kS fixed and reduce its solution to the solution of the Dirichlet problem for 
a half-plane. 

We begin with the following definitions: (i) 5f? is a class of functions of the real 
variable x that are continuous and belong to L2( - co, co). (ii) C is a class of func- 
tions of the complex variable x = x + ixi that are holomorphic in the half-plane 
xi > 0 and O(l/lxl) a,s 1x1 +oo in xi > 0. (iii) The Hilbert transform (Titchmarsh 
1948, chapter 5) off(x) is given by 

(6 , l )  

where the Cauchy principal value of the integral is implied by the crossed integral 
sign;f,(x) is in '+? iff(x) is in '+?. (iv) The Cauchy integral off(x), given by 

is in C and rcduces t,o 

on the real axis. Accordingly, f(x) is zt solution to the Dirichlet problem for 
prescribedf(x) in % [the most general solution is f + iC, where C is a real constant 
that vanishes identically in the present context; see Titchmarsh ( 1  948, chapter 5) 
and Muskhelishvili (1953, chapter 2) for more general discussions]. 

by replacing x by x in (2.6), 
introducing the change of variable a = k/3, integrating by parts along a path 

f(x) = f ( x )  -if*(x) (xi = 0 + ) (6.3) 

We determine the asymptotic approximation to 



A slender body in a rotatingJlow 283 

indented under p = 1 (the integral is absolutely convergent for xi > 0) and letting 
k -+ 00 while holding kr fixed: 

$l(x,r) = -Qkra,B? iHJ1){kr(l -P2)*}eiWdp (6.4a) 

(6.4 b )  
The error factor for (6.4 b) is 1 + O( l /k),  uniformly with respect to kr. Substituting 
(6.4b) into (2.1) and invoking (6.2), we obtain 

?,b - 9 { & i d r H ~ 1 ) ( k r )  f(x)) (xi = 0 + ) (6.5a) 

= +rkr{ -f(x) Y,(kr)  +I+($) Jl(kr)}. (6.5b) 

Setting r = 87 in (6.5a), invoking (1.6), and dividing the result by two, we 

/om - -&kr9{Hjl)(kr)x-l} (xi > 0, k- too ) .  

obtain the singular integral equation 

B?{Q(x) ei"(")f(x)} = &S2y2(x) (xi = 0 + ), (6.6) 

where Q(z) = & K ~ ( J ; ( K ~ )  + Y ; ( K V ) } ~  (6.74-t 

+ 1  - 8 ( K y ) 2 { 1 0 g ( Q K y ) + y - ~ } ( K y ~ 0 )  (6.7b) 

- (87TKv))  ( K r  + 00) (6.7~) 

and w ( x )  = tan-1{ - Jl(KT)/Yl(KT)} (6.8a) 

+ A77K2r2 ( K T  + 0) (6.8b) 

N K7-$77 (K'T/+OO). ( 6 . 8 ~ )  

We also require w'(x) = &7TK2' l j ' (Z )y ' (X) /Q2(2) ,  (6.9) 

which follows from (6.8a) by virtue of the Wronskian relation between J1 and Yl. 
Muskhelishvili (1953, 0 47)  gives a general solution to a singular integral equa- 

tion that is equivalent to (6.6), but we find it economical to proceed indepen- 
dently. Multiplying (6.6) through by exp (w* ) /Q  and introducing 

g(x) = QcY2r2(s) eW*(=)/Q(x), (6.10) 

we obtain 9{ei"(")f(x)} = g(x)  (Xi = O + ) .  (6.11) 

We may show that w(x) and g(x) are in %, and hence that o(x):and g(x) are in C; 
accordingly, we may continue (6.11) into xi > 0 to obtain 

f ( x )  = e-i"(')g(x) (xi > 0). (6.12) 

Setting xi = 0 + in (6.12) and taking the real and imaginary parts of the result, 

(6.13) we obtain f (  x) = 882( h cos w + p sin w )  

and f *  (x) = +S2(h sin w -,u cos w ) ,  (6.14) 

where 4x1 = r 2 ( 4 / Q ( x )  (6.15) 

and p(x)  = - e - 4 d  ( e ~ :  r 2 /w** (6.16) 

f The function Q(s) is not related to the angular velocity Q, which appears in the 
analysis only implicitly through L and IC. 
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We remark that both h and w, and hence also f ,  vanish like $- at the end points of 
the body, but that (6.13) and (6.14) do not yield uniformly valid approximations 
to the velocity in the neighbourhood of blunt ends. 

Turning to the questions of stability and upstream influence, we substitute 
(6.56) into (1.4) to obtain 

ujU = 1 - &nk2{--f(x)&(kr) + f%(x)Jo(kr ) }  ( k + c o ) .  (6.17) 

Setting ~ ( x )  = 0 and T = 0 in (6.13)) (6.14), and (6.17), we obtain [cf. (2.18), 
( 2 . 2 1 ~ )  and w 3 ) 1  ulu = + i7TK2p(X)  ( r  = o) (6.18) 

(6.19) 

Letting kr and KT tend to zero in (6.17), we find that u > 0 in the neighbourhood 
of the body (67 .= r < l /k)  for sufficiently small K ,  and that u first vanishes with 
increasing K at some point well removed from the body. The first critical point 
for a symmetric body of finite length, for which 7 = 0 in 1x1 1 and r( - x) = ~(x), 
appears to arise at x = 1 + and kr = 3.83 (where f = 0 and J, has its first mini- 
mum), in which case K, is given by (z = 1 + implies w = 0 andf, = - 1,Pp) 

0*10177K2,Lh(l) = 1 ( K  = K,.), (6.20) 

which is an implicit equation for K,. 

The analogous example of a semi-elliptical obstacle in a stratified shear flow 
(Huppert & Miles 1969) suggests that tho critical point at which ZL > 0 is first 
violated always lies downstream of the equator for a symmetric body and moves 
to the plane of the stern (x = 1 + ) as 6-t  0. The examples considered by Miles & 
Huppert (1969) suggest that the first critical point for a finite, asymmetric, 
slender body may arise in 1x1 < 1, but even then (6.20) would give an upper 
bound to K ~ .  

We obtain the asymptotic approximation to the drag by letting k-+m in 
(2.28) and invoking the Riemann-Lebesgue lemma and (6.1): 

OD c, = (snk2/62)/ f'(x)f*(x) dx. 
-ra 

Substituting (6.13) and (6.14) into (6.21), we obtain 

(6.21) 

7. Slender ellipsoid 

of length 21 and transverse diameter 261, for which 
We illustrate the results of Q$6 and 7 by considering a slender, prolate ellipsoid 

7 = (1 -xZ))H(l- 1x1). (7.1) 

( 7 . 2 4  

Invoking (5.2) and (2.8)) we obtain the slender-body approximation 

F ( a )  = 262a-3 (sin CL - a cos a)  

= +S2( 1 - L a 2  1 0  + - L a 4  140 + . . .) ( 7 . 2 b )  
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within 1+O(S210gS). The first two terms in (7.2b) give F(a) within 10% for 
a < 2. The first zero of P(a) is a = 4.49. Substituting F(0)  into (2.19), we obtain 

dl = &K2{1+ O(621og S)}. (7.3) 

Substituting (7.2a7 b)  into (2.18), we obtain the following approximations to 
the lee-wave field: 

I++ - ksinkRsin20F(kcos8) (kR-+co) (7.4a) 

= ~ks2sinIcRsin20(1-~~k2cos2~+ .,.>(1+0(62logS)}. (7.4 b) 

Substituting (7.2) into (2.26) and reducing the integral, we obtain 

sin2k sin 2k + 1 + k 2 - 2 I 0  2k (-t-)dt] 1-cost 
k (7.5 a) 

= $k4S2{l-&k2+O(k4)} (k+O) (7 .5b )  

- 2k262(1+(1-22y-210g2k)lc-2+O(k-4)) (k-tco, k6 < l), (7.5c) 

where y is Euler's constant. The error factor for each of (7.5a, b, c) is 1 + O(6210gS), 
but not uniformly as k-too. The approximation (7.5 b) is within 1 yo ( 5 % )  of 
(7.5a) for k < 1.4(2*0). The approximation ( 7 . 5 ~ )  is within 1% of (7.5a) for 
k > 2.6. The numerical values of CD/k2a2 given by (7.5 a) are compared with the 
corresponding values for a sphere in figure 6. 

The drag implied by (7.5 c) in the low-speed limit is 

D N (4/n)pQ2S: = (9/4n)(pQ2V2/Z2) ( S - + O ,  k + - a ) ,  (7.6) 

where So is the frontal area. It is 124 % larger (19 yo smaller) than that given by 
(5.7), for the body described by (5.6), for equal volume (frontal area). It is 63% 
larger than that given by (5.9), for the body prescribed by (5.8), for equal frontal 
area. We infer from (6.21) that the error factor for (7.6) is l + O ( ~ ~ l o g ~ ) .  This 
factor is likely to differ substantially from unity in the upper portion of the range 
0 < K < K, [cf. the drag on a slender, semi-elliptical obstacle in a stratified shear 
flow (Miles & Huppert 1969)l. 

We turn now to the limit k -+ co and the determination of K,. Substituting (7.1) 
into (6.9), we obtain 

Expressing w+(x) in terms of o(x) by integration by parts, and invoking the fact 
that Q is an even function of x, we obtain 

w'(x) = - &rK2X/@(X). (7.7) 

which is an odd function of x that is negative-definite in x = ( 0 , l )  and vanishes 
at  1x1 = 0 and co. Substituting (7.1) and (7.8) into (6.16) and (6.19), we obtain 

and dl = &c~/~*(( 1 - t2)/s2(EJ) cosh w&) d t .  (7.10) 
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Substituting (7.9) into (6.20), we obtain 

(7.11) 

the numerical solution of which yields K, =[l*94. 
We approximate -02, with the aid of the empirical approximations 

which is within 5 % (10%) of the exact value for KT 6 1.8,(2.0), and 
w*(x) = -bx (0 < x < l) ,  (7.13) 

where we may choose b in such a way as to bound - a*, and hence d,, from either 
above or below. Substituting (7.12) and (7.13) into (7.10), we obtain 

.dl i (~/b)~{coshb-b-lsinhb- (3m/l6)I2(b)}  ( 7 . 1 4 ~ )  

n ( K 7 )  f (1 - &‘C7)-’, (7.12) 

3n 
128 = + K ~ (  1 + Gnb2 + . . .) - __ K ~ (  1 + &b2 + . . .) ( b  -+ 0), (7.14b) 

where I, is a modified Bessel function. Substituting (7.12) into (7.8), we obtain 

(2 - g77K f &K2)  X + (97TK - &K2) X3 

+ (1 - x2) [1+ &KZ( 1 -x”] log (;:;)], -- (7.15) 

which is bounded by b ,  x, where 
b, = ~ ‘ ( 1  -+TK+&#), b- = &$(I - & ~ K + & K ’ )  (0 < K < 2). ( 7 . 1 6 ~ ,  b)  

Substituting these bounds into (7.14u), we obtain results that differ by less than 
1 yo (loo/,) for K = l ( 2 ) . t  The mean value of these two results, which is within 
roughly 5 %  of the exact result for K < 2, is compared with the corresponding 
result for a sphere in figure 4. The ratio of d,  for a sphere to dl for a slender 
ellipsoid of the same frontal area varies from 1.5 a t  K = 0 to 1.2 at K = 2; the 
upstream influence of the slender ellipsoid at  a given, axial distance forward of 
the stagnation point is much larger than that of a sphere of the same frontal area 
in consequencc of the fact that the dimensionless distance x in (2.19) is referred 
to the half-length of the body. 

No experimental measurements appear to be available for ellipsoids in 
rotating flows; however, the approximately ellipsoidal shape of the forward wake 
of stagnant fluid in Maxworthy’s (1969) experiments with spheres invites a com- 
parison with the theoretical predictions of the upstream influence for equivalent 
ellipsoids.$ Let L be the length of the forward wake and a the radius of the sphere 
in Maxworthy’s experiments; then, by hypothesis, 

I = L+a,  6 = u/(L+a).  (7.17 a, 6 )  

It is evident from (7.14b) that d, is relatively insensitive to small changes in b within 
the range of interest. This is not true for the integral of (7.11), for which the approximation 
(7.13) is inadequate. 

$ This comparison tacitly assumes that the downstream wake has only a secondary 
influence on the upstream flow. It is clearly of dominant importance for the drag, for which 
we attempt no such comparison. It appears likely that the drag measured by Mexworthy 
is associated primarily with viscous separation, rather than lcc wavcs ; the relative import- 
ance of these two effects may be quite different for slender bodies. 
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In table 1, we compare the values of d, determined from ( a )  figure 4 by interpola- 
tion with respect to 6 with (b)  those determined by plotting Maxworthy’s 
observed values of zcl versus the ratio of the upstream distance to L + a ( - x in 
the present notation) on logarithmic paper and comparing straight-line fits to 
these data with (2.18). We make this comparison only for K = 1.74 and K = 2-16’ 
since the remaining values of K for which Maxworthy reports results are all much 
larger than K,. The agreement is within the experimental scatter for both the 
interpolated and extreme (6 = 0 or 1) values of d,. 

dl d, 
K Lla 6 (theory) (experiment) 

1.74 1.2 0.45 0.76 0.04 0-8 & 0.1 

2.16 1-6 0.38 1*14+ 0-21 
-0.13 1-2 C 0-3 

TBLE 1. Comparison between the theoretical and experimental values of the upstream- 
influence coefficient for two ellipsoids. The upper and lower bounds on the theoretical 
values of d, correspond to the curves labelled 6 = 1 and 6 = 0, respectively, in figure 4. 

Maxworthy also reports radial profiles of u1 that exhibit the oscillatory 
behaviour predicted by (2.16). These profiles gradually spread with increasing 1x1, 
presumably in consequence of viscous effects, but it appears reasonable to make 
a comparison with the inviscid prediction at 1x1 = 5a. The observed values of kr 
at which u1 = 0 are 2.6 and 2.5 for k = 1.74 and 2.16, respectively; the theoretical 
value is kr = 2.4. The corresponding values of kr at which u1 exhibits its first 
minimum are 4-2 and 4.5, which compare with the theoretical value of 3.8. 

The comparisons of the last two paragraphs suggest that an inviscid model 
may be adequate for the prediction of the upstream influence of a slender body 
in a rotating flow for K < 2 and 6 < 0.5. 

This work was partially supported by a grant from the National Science 
Foundation and by Contract Nonr-2216(29) with the Office of Naval Research. 
I am indebted to H.E.Huppert for the numerical solution of (7.11)’ to T.B. 
Benjamin and K. Stewartson for stimulating discussions, and to T. Maxworthy 
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